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Then one obtains 

P÷(E2 IIEhl) 

{ [a+(e,, 
: 1 + La_-~  ~2) J 

exp(-IUiIE~)} -l. (20) 

Let us compare this with the classical tangent formula 
(Cochran & Woolfson, 1955) for E 2--- 1. It then fol- 
lows from (20) that (if N is high enough) 

APPENDIX 
Some useful relations 

d 
- -  In(X)=½In_I(X)+½I,+I(X). (A1) 
dx 

d E 
dx 2 l,,(x)=~I,,_2(x)+½l,,(x)+~l,,+2(x). (A2) 

J~(/x)= i"I,,(x); J _ , , ( x ) = ( - 1 ) " L ( x ) ;  

l_ , , (x )=(-1)" l , , (x ) .  (a3)  

exp (iz cos q~)=Jo(z)+2 ~ ikJk(Z) COS (kq~). (a4)  
k=l 

This gives P+=0.41 for Ul]=0"3 whereas the 
classical formula would have given P+ = 0.5. 

5. Concluding remarks 

Besides the problem of proving that the m equations 
(2) always give a solution for acceptable values of 
E l , . . . ,  Em it also remains to investigate the term 6N. 
We believe that 6N can be approximated very well 
by 1 (and some heuristic arguments point to that 
direction), but a lot of research has still to be done. 
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Abstract 

A new direct method (called T R Y M I N )  for phase- 
problem solution is described. At first a methodical 
procedure is presented for the construction of a direct 
method. The aim of the calculation is formulated as 
a consistency between theoretical and calculated 
distributions of invariants. A minimized function is 
obtained and an algorithm for its minimization is 
proposed. The algorithm is based on the partial 
decomposition of phases into three subsets and on 
the cyclical improvement of the estimate of local 
minima. The efficiency of the method has been tested 
on 23 structures and a short evaluation of the results 
of computer experiments with test structures is pre- 
sented. 

0108-7673/89/070456-08503.00 

Definition of the problem 

The direct method for the solution of the phase prob- 
lem is based on a theory that gives for a great number 
of functions Y, of phases ~ a forecast of their values 
for the correct phases ~*. For arbitrary values l~, u~ 
the theory affords the probability that the theoretically 
correct value Y* = Yi(~0*) satisfies 

l, < Y* < u,. 

Implementing this theory we can formulate the 
following task: to construct an algorithm for the gen- 
eration of a limited number of sets q3 for which the 
values 17"~ = Y~(~) will satisfy inequalities l; < ~'~ < u~ 
(for a priori given l~, u~) with frequency in correspon- 
dence with the theory. 

O 1989 International Union of Crystallography 
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We can presume that some of the sets ~3 will be 
close to the correct value ~*. This assumption is 
acceptable, because the power of direct methods 
resides in the fact that the problem is overdetermined. 
For some number of unknown phases the theory gives 
typically a twenty times greater number of functions 
Y~. 

We shall use only functions Y~ of the form 

Y~(~) = rsd ( ~  ku~j -P , ) ,  

where ko are equal to 1, - 1  or 0, and most of them 
are zero; p~ is chosen so that the theoretical probability 
density function of the absolute values of Y~ has a 
maximum at zero; and rsd is the real function of the 
real argument defined as 

rsd (x) = z if and only if -Tr - z < 7r, 

and an integer value j (x)  exists that satisfies x--  
z + 2rrj(x). 

We shall use the symbol K for the matrix (ku), n 
for the number of functions Y~ and rn for the number 
of unknown phases. Phases are chosen to fix the origin 
and their valuesprojected into terms pi. Now we can 
suppose that K ' K  is a non-singular matrix. 

In the examples we shall use only the triple-phase 
relationships as they are generated by the MUL- 
TAN80 SIGMA2 routine (Main, Fiske, Hull, Lessin- 
ger, Germain, Declercq & Woolfson, 1980) for phase 
determination. We shall use the symbol K~ for the 
parameter of their distribution functions. If Y~ is 
derived from triple-phase relationships then at most 
three coefficients k~ for each i = 1 , . . . ,  m are non-zero 
and p~ contains the phase shift and the values of the 
phases fixing the origin. 

Fitting the distribution 

The principle of crystal structure solution using distri- 
bution fitting methods was used by Ha~ek (1974). 
However, a general description of these methods was 
presented later (Ha~ek, 1984). 

The theoretical distribution functions for Y~ may 
differ for different i. To overcome this problem Ha~ek 
(1984) proposes a division of semi-invariants into 
groups with approximately the same one-dimensional 
distribution. A similar solution to this problem is 
given in Appendix 1. The method may be simply 
explained: For each function Y~ we divide the interval 
(0, ~r) of possible values of [~[ into k subintervals 
(e.g. k = 15) so that the probability 

prob ( Y* is element o f j t h  subinterval) 

is independent of the serial number of the subinterval 
and equals 1/k. Now we can link an integer vector J 
to any calculated vector Y so that Ji is the serial 
number of the subinterval containing the value I ,1. 
For the theoretically correct vector Y* each number 

1, 2 , . . . ,  k must be contained in the linked vector J* 
with the same frequency. 

Let n be the total number of elements J and let nj 
be the number of such .~ for which ~ = j  ( j =  
1 , . . . ,  k). We can express the measure of the con- 
sistency of ~" (and if) with the theory as a function 
(chi-square test) 

k 

G(¢)=~,  (n / k -n j )2k /n .  
J 

Imitative function 

The previous expression transforms the solution of 
the phase problem into a function minimization 
problem. 

The properties of G are very bad for the application 
of some minimization technique: G is not a con- 
tinuous function, the regions of continuity are very 
small and G is constant in these regions. In some 
stages of the minimization process it may be useful 
to replace G by an imitative function F. This function 
must have the following two features: one of the best 
minima of F must be close to ~*; and effective tools 
must be available for searching for 'good' minima of 
F. 

The first demand can be satisfied if the expected 
value (F(~*).) is small in comparison with the other 
values of F. It may be expressed by the condition 

D(F)  must be minimum, 

where D ( F ) = ( i F ) - m i n  (F))/(llFII-min (F)); iF) 
denotes the estimated value of F, min (F) is the value 
of the global minimum of F, and I[ F[I is the value of 
F expected from random phases: 

IIFII = v $ F(~) d~/~v d~' 

where 
v =  ( -m ~)  x .  • .  x ( -m ~) .  

For the function F to be simply minimized we shall 
consider only the form 

/I 

F(tp) = Y~f[ Y,(e)]. 
i 

Functions f must contribute uniformly to the sum 
function F. This may be expressed by the normaliz- 
ation conditions 

expected values ~ ) = 1  and minimum values 
min ( f ) =  0. For simple f it is easy to express iF)  
and ][F[[ analytically: 

i F ) =  ~ i f )  = n and [[FI[ = ~ Ilfll, 
i i 

where 
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! 
Table 1. Coefficients u~, vi, Ui as a function o f  Ki 

K i U i I) i U~ 

I-0 1"03 0"22 0"38 
1-5 1"59 0"20 0"55 
2"0 2-40 0"18 0"85 
2"5 3-45 0-16 1"34 
3"0 4"68 0-15 2"14 
3"5 6"01 0" 14 3"46 
4.0 7"38 0"13 5"63 
4-5 8.76 0"12 9"22 
5"0 10-12 0-12 15.14 
5-5 11"47 0.11 24"89 
6"0 12"81 0.11 40"98 

It is reasonable to approximate min (F)  by zero. 
This assumption yields postulates for f :  

(f~)= 1 and m i n ( f ) = 0  

and IIf, ll is maximum. 

Examples of imitative functions and the com- 
parison with functions used in traditional direct 
methods are given in Appendix 2. The results presen- 
ted there illustrate that the idea of imitative functions 
is well applicable to the phase problem. Now we can 
try to construct a new function as a 'better imitation'. 

Suppose we have imitative functions in the form 

Such a function for triple-phase relationships in the 
form 

F ( ~ )  = ~, K,Y~(~) 
i 

is used in the program Y Z A R C  (Wright, 1983). A 
method for the minimization of such functions for a 
very sparse matrix A =  (a~j) is given by K[f~. (1982). 
Some results of this work are given in Appendix 3. 

For the construction of a new imitative function 
we can consider 

f~[ Y~(~0)] = u,{ Y~(~o) + v, rsd2[ Y~(~o) + s,]} 

- uivis2/(1 + v,). 

This formula satisfies the requirement min (f~)=0. 
For the next two requirements, (f~)= 1 and IIf, II 
maximal, there is an analytical solution from which 
the following conclusions result: If Y, contains only 
special phases then v, must be zero. For general Yi, 
s~ = rr is obtained. Table 1 shows some values of u~ 
and v~ for general Yi and values of u'~ for special Y~ 
if Y~ are triple-phase relationship. 

We can interpret the non-zero values of v~ and si 
as a useful and important prevention against the 
so-called trivial or large-peak solution. But non-zero 
values of v~ retard the iteration process for the calcula- 
tion of local minima. As a compromise we can use 
only a part (e.g. 20%) of v~ non-zero and for the 
remaining indexes select v~ = 0 and use u~ according 
to Table 3 in Appendix 2. 

Improvement of local minima 

The algorithm described in Appendix 3 produces 
stable minima of the function F. Stable minima are 
'better local minimum points', but there is a problem 
in searching for the 'best local minimum points'. For 
real cases (large values of m, n) the number of stable 
minima is practically infinite and further improve- 
ment is necessary. 

A method for the improvement of local minima 
consists of two steps: 

(a) The unknown phases are suboptimally decom- 
posed into three subsets with approximately equal 
number of elements, so that the (weighted) number 
ofsubfunctions containing the phases from one subset 
and the phases from the remaining ones is as small 
as possible. The decomposition is made by an 
algorithm based on a graph representation of a sparse 
matrix K. The complete description of this algorithm 
is given by K.ff~. (1982). For a formal definition of 
the phase-set decomposition see Appendix 4. 

(b) Good local minima of F are chosen as starting 
points for improvement. These sets are stored in the 
table T. From table T the best set t* with minimum 
value G(t*)  is chosen. The values of all phases from 
one subset given by the decomposition (about m/3  
phases) are fixed. The minimization procedure 
described in Appendix 3 is applied only to the rest 
of the phases (the unfixed 2m/3  phases) and a new 
local minimum t' is calculated. If t' and t* differ 
considerably (zr/5 per phase, for example) then t' is 
put into table T, otherwise if G ( t ' ) <  G(t*)  then t' 
replaces t*. From three to ten trials for each subset 
may be processed and as a result there is an improve- 
ment of starting vector t* (the output for the Fourier 
procedure) and an improvement of sets in table T 
(for the next generation). 

Some local minima of F (e.g. 50-500) are needed 
as initial values for the table T. These local minima 
are calculated by iterations (described in Appendix 
3) from starting points which are assigned randomly 
or better by the solution of the 'regular choice' from 
the set of functions Yi. The phase set ¢ '  is the solution 
of the regular choice from Y~, if Y~(~0')= 0 for the 
strongest functions Y, (Appendix 5). 

Remark 

The operations concerning the table T are the 
essential step from the good local minima of the 
imitative function F to the global (or 'very good') 
minimum of the chi-square test G. 

One may save on computing time by the following 
procedure: choose a subset of 50-70% unknown 
phases and at first consider only functions Yi depend- 
ing on this subset; solve the problem for reduced 
function G (and F) and generate 20-50 sets (good 
minima of the reduced system); extend these sets by 
setting the remaining phases randomly; calculate 
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local minima from starting points given by these 
extended sets and use these minima as initial values 
for a new table T; and apply the improvement for 
the final solution of the primary system. 

Trial phases 

A small subset of phases (from one to six) can be 
chosen as trial phases, as in the multiple-tangent- 
formula method (Woolfson, 1976), and then the best 
minima for all combinations of the possible values 
of these phases (or six values zr/6, 37 r /6 , . . . ,  l l w / 6  
for general phase) can be searched for. There are two 
reasons for this procedure: the minimum close to the 
'physical solution' may be more dominant among 
other minima of the functions G and F if the trial 
phases are replaced by the correct values; and the 
simplification of function F by fixing the small subset 
of phases may be significant and useful. 

On the other hand the number of trial phases must 
be small, because of the exponential growth of com- 
puting time. 

Evaluation procedure of numerical experiments 

For numerical experiments only the program system 
M U L T A N 8 0  (Main et al., 1980) was available as a 
tool for the production of functions Y~. This fact 
reduces testing possibilities to ~2 relationships only. 

If at least one phase in the relationship were gen- 
eral, the distribution function was supposed to be of 
the form 

exp [K cos (Y)]/27rlo(K), 

where Io is a modified Bessel function of the second 
kind. 

The probability [1 +exp ( -K)]  -t was supposed for 
the special phase relationships (triplets) with zero 
values. 

All the normalized structure amplitudes generated 
by N O R M A L 8 0  were used and ~1 relationships were 
suppressed in the M U L T A N  F I R S T  program. 

Three approaches were used for structure solution. 
In class 1 50% of unknown phases were taken into 
account and 20-40 phase sets were produced. All 
these sets were extended and used for the next 
improvement. There were maximally ten final sets 
generated and the three with the best chi-square 
values were interpreted using programs EXFFT80  
and S E A R C H 8 0  from the M U L T A N 8 0  package. 

Class 2 differs from class 1 only in the fact that 
70% of the unknown phases were taken into account. 

Class 3 differs significantly. 100% of the unknown 
phases were used and also four to six trial phases. 
Five to eight sets were generated for different combi- 
nations of trial phase values consecutively. 

Only the approaches of class 1 and 2 may be useful 
in practical structure solutions. Class 3 is too time 

Table 2. Test structures 

N a m e ,  fo rmula ,  
No.  space  group,  Z 

1 TURIO, CIsH2402, P6322, Z = 12 
2 EX4, CI2H2oN202, P~2121, Z = 4  
3 QUINOL, C6H602, R3, Z = 5 4  
4 DIAM, CI4H2o O, P42/n, Z = 8  
5 INOS, C6H1206.H2 O, P 2 J n ,  Z = 8  
6 EXI, C~THt3NS, P21/c, Z = 4  
7 ALKA, C31H39N305, P21212t, Z = 4  
8 JINDRA, C12HIsN303, P21, Z = 2  
9 EX2, C9HIaN202, P21212t, Z = 4  

10 EX5, CIoHI6N202, P212t21, Z = 4  
11 EX3, CI2H2oN202, P212121, Z = 4  
12 LOGANIN, C17H2601o, P212121, Z =4 
13 BOBBY, NaCaN(CH2CO2)3, P213, Z =4  
14 MUNICHI ,  C2oHI6, C2, Z = 8 
15 BED, C26H26N404, I4, Z = 8  
16 TPH, C24N2H20, C222t, Z =  12 
17 AZET, C21Ht6CINO, Pca21, Z = 8 
18 SCHWZ2, C46H7oO27, P1, Z = 1 
19 MGHEX, C4sH6sNI2OI2Mg. - 

2C104.4CH3CN, P31, Z = 3 
20 SELENID, C22H2sO2Se, P21, Z = 2  
21 ApApA, C3oH37NIsOI6P 2 . 6H20, 

P412t2 , Z = 8 
22 ERGO, C28H440, P21212t, Z = 8 
23 GOLDMAN2, C28H16, Cc, Z = 8 

N A / N F  C C H I Q  

17/17 1 35 
16/16 2 140 
24/24 1 340 
15/15 2 480 
26/25 2 227 
19/19 1 167 
39/38 2 121 
18/18 2 19 
14/14 1 6 
14/14 1 11 
16/16 1 63 
27/27 1 62 

5/5 2 17 
40/40 3 12 
34/22 3 149 
39/39 3 9 
48/5 2 356 
73/0 30 
95/0 2362 

25/4 2 1329 
69/0 433 

58/0 42 
56/0 59 

No. is sequence number. 
C is class necessary for successful solution. 
NA is number of non-H atoms in the asymmetric unit. 
NF is number of non-H atoms found by T R Y M I N .  
CHIQ is a minimum chi-square test value, which was calculated for pub- 

lished and correct sets and for degree of freedom k = 14. 
References: 1,3, 4, 5, 12-23 (Sheldrick, 1982); 2 (Symersk2~, Huml & Peti'i~ek, 

1987); 6 (Podlaha, Podlahov~i & Symersk~, 1987); 7 unpublished; 8 
(Symersk~, Blfiha & Je~n~', 1988); 9 (Symersk2~, Blfiha & Langer, 1987a); 
10 (Symersk2~, Huml & Peti'ii:ek, 1987); 11 (Symersk2~, Blfiha & Langer, 
1987b). 

consuming. The typical computing time for a com- 
puter like the IBM 4341-1 (ca 800 000 operations s -1) 
is 

class minutes 
1 90 
2 150 
3 900-2000. 

Testing structures 

The efficiency of the program system T R Y M I N  has 
been tested for 23 structures. 17 of them were taken 
from the testing-structures set of Sheldrick (1982), 
consisting of difficult and interesting examples. The 
correct phase values were known as well as the posi- 
tions of atoms for all tested structures. Examples 3, 
4, 5 and 6 are centrosymmetric, the other are non- 
centrosymmetric. 

In Table 2 some characteristics of the structures 
are given: sequence number, working name, chemical 
formula, space group, number of formulas in the unit 
cell, number of non-H atoms in the asymmetric unit, 
the class and the best chi-square value corresponding 
to the correct set. 

The structures 1-13 are easily solved. Approximate 
positions of the non-H atoms in the asymmetric unit 
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were found among the first three phase sets with the 
lowest chi-square values. One atom was missing in 
structures 5 and 7. 

These structures possess relatively small numbers 
of atoms and, excluding 13, they do not contain heavy 
atoms. 

Structures 14-23 are notoriously difficult structures 
for direct methods (Sheldrick, 1982). However, with 
greater expense of computational effort, all atoms of 
MUNICH1 and TPH were found, and also the essen- 
tial fragment of BED (22 atoms). It must be noted 
that these three structures also do not contain either 
a great number of atoms nor heavy atoms. 

No successful solution was found for structures 
17-23. Only a small number of atoms, if any, were 
found by the Fourier transform of several most pro- 
mising phase sets with the lowest chi-square values. 
These structures contain a greater number of atoms 
and some of them also contain heavy atoms. 

To decide if the application of the present method 
for triple-phase relationships is useful in practice we 
can compare the results of a MULTAN87 (Debaer- 
demaeker, Germain, Main, Tate & Woolfson, 1987) 
test on an identical set of examples (Symersk2~ & KH~, 
1989). The default run of MULTAN87 gave a sol- 
ution for the seven easiest structures (4, 5, 6, 9, 10, 
11 and 13). The use of the statistically weighted 
tangent formula (SWTR) and the generation of more 
phase sets ( R A N T A N  M A X S E T  300) gave similar 
results to the use of TRYMIN.  MULTAN87  was 
more successful in examples 18 and 23 and it was 
also less time consuming than TR YMIN. It has failed 
to solve example 16. 

As no implementation of the fitting of distributions 
for quartets was made, comparison with the results 
of the Sayre tangent formula was not possible. 

significantly better than that generated for a correct 
set. 

The consistency between physically correct sol- 
utions and theoretically correct solutions for the 
remaining examples, SCHWZ2, GOLDMAN2 and 
ERGO, may be characterized as acceptable, but not 
expressive. T R Y M I N  has generated here a great 
number of quite uninterpretable sets with chi-square 
values close to the value for a correct set. Similarly, 
it is possible to evaluate the results for examples 14, 
15 and 16. The only difference is that here the correct 
set was successfully generated. 

For both types of unsuccessful structures a very 
different method may be useful. It need not be so 
close to the theory, but it must generate a great num- 
ber of diverse sets for Fourier transform (Yao, 1981). 

On the other hand, we can hope that better con- 
sistency between the theory and the physics may be 
obtained for more exact triplet distributions or for 
distributions of more complicated semi-invariants 
(such as quartets). Then the present method could 
bring an important extension of direct-methods 
possibilities. 

I thank Professor M. Fiedler for his helpful con- 
sultation in solutions of the mathematical problems 
and Drs Sklemi~, PetNrek, Ha~ek and Langer for their 
help with the problem formulation and with prepar- 
ation of computer experiments. Thanks are due to J. 
Hagek whose consultations resulted in the formula- 
tion of the problem presented here. It is a pleasure 
to express my appreciation to J. Symersk2~ for provid- 
ing his data for numerical experiments and for his 
collaboration on solving the test structures and in 
formulating the conclusions. 

Concluding remarks 

These examples confirm that the system TR Y M I N  is 
capable of solving the phase problem. There are no 
problems with trivial solutions. The sets limited to a 
trivial solution have enormously great chi-square 
values and are automatically excluded from the 
minimization process. 

The presented formulation of the phase-problem 
solution as a distribution-fitting task reduces the 
demands for the number of sets necessary to find a 
solution. Of course, good consistency of expression 
is necessary between the predicted distributions and 
those calculated from semi-invariants of the physi- 
cally correct set of phases. 

If the consistency were not good, then it would be 
impossible to reach results useful in practice by means 
of the method described here. This is the case with 
the unsuccessful determination of structures 
MGHEX, SELENID, ApApA and AZET. The chi- 
square value of the sets generated by T R Y M I N  is 

APPENDIX 1 
Distribution-fitting algorithm 

Let X be a random variable with a continuous proba- 
bility density function p(x). The transformed random 
variable Z 

X 

Z =  I p(x) dx 
- - 0 ( 3  

has uniform probability distribution function on the 
interval (0, 1). 

Let X be a discrete random variable (X may be 
only 0 or 1). Let R A N D O M  be independent random 
variables with a uniform distribution on interval 
(0, 1). Let Z be a random variable constructed by the 
rule: 

i f X = O  t h e n Z = p r o b ( X = O )  x R A N D O M  

else Z = prob (X = O)+prob (X = 1) 

x R A N D O M ;  
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Table 3. Comparison of  traditional functions and 
imitative functions 

-~'. Ki cos [ Yi(q~)] with -Y. vi cos [ Yi(~P)], 
Y'. K, Y2(~o) with Y. w, y2(~o), 

F. {cos [ Yi(~o)] -(cos ( Y*))}/var, with ~ u,{cos [ Yi(~o)] - ci} 2, 

where Yi are general three-phase relationships; (cos) is an abbrevi- 
ation for (cos (Yi*)). 

Ki vi wi (cos) ci 1/var i  ui 

1.0 0-98 0.73 0-45 0.77 2-82 2.18 
1.5 1-34 1-08 0.60 0.80 4.05 3.47 
2.0 1.79 1.53 0-70 0.82 6.09 5.55 
2.5 2.31 2-08 0.77 0-85 9.19 8.68 
3.0 2.85 2.69 0.81 0.86 13.53 13.03 
3.5 3.41 3.31 0.84 0.88 19.15 18.66 
4.0 3.97 3.93 0.86 0.89 26.01 25.51 
4.5 4.53 4.55 0-88 0.90 34.03 33.54 
5.0 5.08 5.16 0.89 0.91 43.12 42.67 
5.5 5.63 5.77 0.90 0-92 53.24 52.75 
6.0 6.18 6.37 0.91 0.92 64.35 63.88 

then Z has a uniform probability distribution on the 
interval (0, 1). 

These two transformation rules may be used for 
calculated values Y/= Y~(ff). Then the test of com- 
patibility of calculated and expected frequencies may 
be simply realized by the chi-square test. 

Remark 

The result of this test must be interpreted only 
relatively, because the values ~ are not a sample of 
independent observations. 

APPENDIX 2 
Examples of imitative functions 

The well known tangent formula can be derived from 
an application of the cyclic coordinate descent 
method to the minimization of the function 

- Z  K, cos [ Y,(~)] 
i 

for three-phase invariants. 
For f~(q~) in the form d , -  u~ cos [ Y~(~) - y , ]  we can 

(after application of the postulates for imitative func- 
tions) obtain the task: 

minimization of Co- c ~ v~ cos [ Y~(q~)], 
i 

where Co, c are constants and the weights v~ (for 
three-phase relations with general phases) depend on 
K~ as shown in Table 3. The differences between vi 
and Ki are negligible. This means that the function 
minimized in the program M U L T A N  can be derived 
as an imitative function. 

Analogously for f~(~p) = u i rsd 2 [ Y~(q~)-y~] we can 
obtain the task: 

minimization of c' ~ w, y2(q~), 
i 

where c' is a constant and the dependence of w~ on 
K~ is as shown in Table 3. We can see that this imitative 
function is practically identical with the function 
minimized by the program Y Z A R C  (Baggio, 
Woolfson & Germain, 1978; Wright, 1983). 

Hauptman,  Fisher, Hancock & Norton (1969) pro- 
posed the minimization of 

{cos [ Y / ( ~ ) ] -  (cos ( Y*))}2/vari. 
i 

For fi(~o)= u,{cos [ Yi(q~)]-c,} 2 we obtain an imita- 
tive function that is again nearly identical. 

APPENDIX 3 
Local minima of the weighted sum of the squares of 

residuals of the phase relationships 

Definitions 

In this Appendix we shall work with the phases 
expressed in cycles, i.e. after transformation of the 
interval ( -~ ' ,  It) into ( -1 /2 ,  1/2). In order to simplify 
the following theorems we shall consider (in these 
theorems) only general phases. 

Let m be the number of unknown phases X l , . . . ,  xm 
and let n be greater than m. Let A = (a/j) be an m x n 
sparse matrix with non-zero elements equal to 1 or 
-1 .  Suppose that ATA is a non-singular matrix. Let 
c be a real vector of length n. Let the phase relation- 
ships be expressed in the form 

aux j - c i = O m o d u l o  1, where i = l , . . . , n .  
J 

The residual ri is defined by 

ri = ci - Y~ aitxz -j~, 
1 

where ji is the integer for which the inequalities 
-0 .5  -< ri < 0-5 are valid. 

Let wi be positive real numbers. Denote f ( x ) =  
~'~ wir 2, where f ( x )  is the function to be minimized. 
Let W be an n x n  diagonal matrix, where the 
diagonal elements are w,. Let j ( x )  be a vector of 
integers of length n which satisfies -0 .5  -< r(x) < 0.5, 
where r(x) = Ax  - c + j (x )  is a vector of residua. The 
function f ( x )  may be expressed in the form 

f ( x )  = r(x) rWr(x).  

Mathematical properties o f f ( x )  

Theorem 1. Function f ( x )  is continuous for all x. 
If k is an integer vector of length m, then f ( x  + k) = 
f ( x )  for all x. The gradient and Hessian of f exists 
in point x if and only if absolute values of all com- 
ponents of  vector r(x) are not equal to 0.5. This is 
specified by 

Vf(x)  = 2ATWr(x),  V2f (x )=  2ArWA. 
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Theorem 2. Point x is a local minimum point if 
and only if a continuous gradient exists at the point 
and the gradient is zero. 

Theorem 3. The problem of finding the global 
minimum point of f (x )  is a quadratic integer pro- 
gramming problem. 

Stable minima 

Theorem 3 shows that our problem is the problem 
of quadratic integer programming. However, integer 
programming methods are inconvenient here, 
because the size of the problem is too large. Steepest 
descents or other gradient methods do not apply well 
here too, because f (x )  does not have continuous 
partial derivatives. Also, the regions with a con- 
tinuous gradient are very small (practically infinitely 
small). A cyclic coordinate descent method (Luenber- 
ger, 1973) seems to be attractive here. This method 
is based on the idea that a better approximation of 
the minimum (new iterative point x) is calculated 
from x A= ( x A , . . . ,  X A) by solving 

A f ( x  s) = minimize f ( x a , . . . ,  Xi , . . . ,  Xm) 
Xi 

where i is cyclically 1, 2 , . . . ,  m, 1, 2 , . . . ,  m, 1 , . . .  etc. 
Minimization in one coordinate is simple for special 
phases (by comparison of two function values). In 
the case of the general phase there is a special fast 
algorithm. 

Convergence properties are discussed by K~f~ 
(1982): the cyclic coordinate descent algorithm for 
minimization of function f (x )  converges to the local 
minimum point for each starting point; the speed of 
convergence is comparable with Gauss-Seidel iter- 
ations for a positive definite matrix ArWA; and the 
iterative process converges to one from local 
minimum points x* with properties 

f(x*) < f(x* + zei), i= 1 , . . . ,  m 

where e~ is the ith unit vector, and z is an arbitrary 
real value. We shall call these points x 'stable minima'. 

A P P E N D I X  4 
Decomposition of phases into three subsets 

Let all the phases ~ be decomposed into three subsets 
9a,  9~ and 9c.  As each function f in the expression 

F ( ¢ )  = ~f~[ Y~(9)] 
i 

depends only on a few phases we can rearrange the 
summation so that F can be expressed as 

F ( 9 )  = FA(gA) + FoA(gA, O'S, 9C) + F~(gB, 9c )  

= Ff(9B)+ F~(gA, 9B, 9 C )  "t FB(9A, 9C) 

= F C ( g c )  + FC(gA, 9s,  9 c ) +  FC(9A, 9B). 

We define the weight of the decomposition 9---- 
{9A, 98, 9C } as 

W(gA, 9B, 9C) = max (l[Fo~ll, IIF~II, H FoCll). 
Let nmb (X) denotes the number of elements of vec- 
tor X. We define an equable decomposition as a 
decomposition for which 

]nmb (~Ox)- nmb (9)/3[ < nmb (~) /50  

for X = A, B and C. 

The decomposition which is equable and has the 
minimum weight is called the optimal decomposition. 

In real cases the weight of the optimal decomposi- 
tion is about [I F[[/2. 

A P P E N D I X  5 
Regular choice and its solution 

Let M be the set of all non-singular m x m  sub- 
matrices from matrix K. For each matrix K '  of M 
the weight w(K') is defined as a sum of Ilfj[[ of the 
chosen Yj. We define the regular choice as the choice 
given by matrix K ' ~  M with maximal value w(K').  

Now for chosen functions Yj we presume zero to 
be the most probable value. This means that we must 
solve a regular system 

r~(~) =0, 

where the indexes j are defined by the regular choice. 
A number of its solutions is given by the absolute 
value of the determinant of matrix K'. This fact can 
be illustrated, for example, by the system 

rsd (9~ + 92) = 0 

rsd (9~ - 92+ 7r) = 0; 

there are two solutions: 

(9 , ,  92) = (7r/2, 37r/2) 

(91,92) = (37r/2, 7r/2). 

Let r be the absolute value of the determinant of 
K'  and let 9 (~) , . . . ,  9 (r) be a complete solution of 
regular choice. As initial values for table T we shall 
use stable minima t(~) , . . . ,  t ~r). They will be calcu- 
lated from starting points 9 (~), . . . ,  9 t~) by the iterative 
process described in Appendix 3. 
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Abstract 

Two methods are discussed in detail. In the first 
method the triplet relationship is treated using the 
first neighborhood, and the quartet relationship using 
its second neighborhood. For the triplet relationship 
it is found that the reliability 

is enhanced when 

Rh--~ Rk--~ Rh+k 

and large. This conclusion is drawn from formula 
(16) giving the conditional probability of ¢Ph+~k-- 
~h+k using an asymptotic development up to and 
including terms of order N -1/2. For the quartet 
relationship it is found that the reliability that 

tPh "]- ~k  -at- ~OI -- f~Ph+k+! ~ 77" 

given Rh+k--~ Rh+~ = Rk+l--~ 0 is diminished when 

R h = R k --- R!----- Rh+k+ ! 

and large. This conclusion is drawn from formula 
(19) using similar calculations for the triplet relation- 
ship. A heuristic theoretical discussion of this last 
result trying to explain this difference with the usual 
theories is given. In the second method the triplet 
relationship is treated using its first neighborhood. 
These calculations have been done using a 'normal '  
asymptotic development up to and including terms 

0108 -7673 / 89/070463 -06503.00 

of order N -t/2. As a result a formula (28) is obtained 
that is (at least theoretically) able to predict negative 
cosine values. A third method that is proposed where 
one uses the ideas of Patterson superposition will be 
discussed in detail in a forthcoming paper. 

Introduction 

Let us consider an equal-atom structure with space 
group P1. For N atoms with respective position vec- 
tors rl ,  r2,.  • . ,  rN the normalized structure factor Eh 
for the reciprocal-lattice vector b becomes 

N 
Eh = N -~/2 ~ exp (2wib. rj). 

j = l  

For deriving joint probability distributions of struc- 
ture factors we shall consider the atomic vectors r~, 
r 2 , . . . , r N  as random vectors and this leads us to 
consider the random variable 

N 
F.h = N -1/2 Y. exp (2~rib.xj) (1) 

j = l  

where the xj are random variables that range over the 
possible positions of the atomic position vectors r l ,  
r2 , . .  • ,rN. Usually one considers the xj to be mutually 
independent and one imposes each xj to range uni- 
formly over the unit cell. Another approach (Brosius, 
1985) is to observe that all x i - x j  only have to range 
over the set of all Patterson vectors. In order to impose 
this latter condition one can use two methods: (1) 
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